Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice.
نویسندگان
چکیده
Hypertension in the elderly substantially increases the risk of stroke and vascular cognitive impairment in part due to an impaired functional adaptation of aged cerebral arteries to high blood pressure. To elucidate the mechanisms underlying impaired autoregulatory protection in aging, hypertension was induced in young (3 mo) and aged (24 mo) C57BL/6 mice by chronic infusion of angiotensin II and pressure-induced changes in smooth muscle cell (SMC) intracellular Ca(2+) concentration ([Ca(2+)]i) and myogenic constriction of middle cerebral arteries (MCA) were assessed. In MCAs from young hypertensive mice, pressure-induced increases in vascular SMC [Ca(2+)]i and myogenic tone were increased, and these adaptive responses were inhibited by the cytochrome P-450 ω-hydroxylase inhibitor HET0016 and the transient receptor potential (TRP) channel blocker SKF96365. Administration of 20- hydroxyeicosatetraenoic acid (HETE) increased SMC [Ca(2+)]i and constricted MCAs, and these responses were inhibited by SKF96365. MCAs from aged hypertensive mice did not show adaptive increases in pressure-induced calcium signal and myogenic tone and responses to HET0016 and SKF96365 were blunted. Inhibition of large-conductance Ca(2+)-activated K(+) (BK) channels by iberiotoxin enhanced SMC [Ca(2+)]i and myogenic constriction in MCAs of young normotensive animals, whereas it was without effect in MCAs of young hypertensive mice. Iberiotoxin did not restore myogenic adaptation in MCAs of aged hypertensive mice. Thus functional maladaptation of aged cerebral arteries to hypertension is due to the dysregulation of pressure-induced 20-HETE and TRP channel-mediated SMC calcium signaling, whereas overactivation of BK channels is unlikely to play a role in this phenomenon.
منابع مشابه
CALL FOR PAPERS Pathophysiology of Hypertension Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca signaling and myogenic constriction of cerebral arteries in aged hypertensive mice
Peter Toth, Anna Csiszar, Zsuzsanna Tucsek, Danuta Sosnowska, Tripti Gautam, Akos Koller, Michal Laniado Schwartzman, William E. Sonntag, and Zoltan Ungvari Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Pathophysiology and Gerontology and Szentagothai Research Center, University of Pecs,...
متن کاملGenetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis.
OBJECTIVE In resistance arteries, there is an emerging view that smooth muscle CaV3.2 channels restrain arterial constriction through a feedback response involving the large-conductance Ca(2+)-activated K(+) channel (BKCa). Here, we used wild-type and CaV3.2 knockout (CaV3.2(-/-)) mice to definitively test whether CaV3.2 moderates myogenic tone in mesenteric arteries via the CaV3.2-ryanodine re...
متن کاملRole of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملOpposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries.
In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation ...
متن کاملProduction of 20-HETE and its role in autoregulation of cerebral blood flow.
In the brain, pressure-induced myogenic constriction of cerebral arteriolar muscle contributes to autoregulation of cerebral blood flow (CBF). This study examined the role of 20-HETE in autoregulation of CBF in anesthetized rats. The expression of P-450 4A protein and mRNA was localized in isolated cerebral arteriolar muscle of rat by immunocytochemistry and in situ hybridization. The results o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 305 12 شماره
صفحات -
تاریخ انتشار 2013